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Abstract 

The terahertz (THz) part of the 

electromagnetic spectrum falls between the lower 

frequency millimetre wave region and, at higher 

frequencies, the far-infrared region. The 

frequency range extends from 0.1 THz to 10 THz, 

where both these limits are rather loose. As the 

THz region separates the more established 

domains of microwaves and optics, a typical THz 

technique will incorporate aspects of both realms, 

and may even draw on the best of both. The two 

bounding parts of the spectrum also yield distinct 

sets of methods of generating and detecting THz 

waves. These approaches can thus be categorised 

as having either microwave or optical/photonic 

origins. As a result of breakthroughs in 

technology, the THz region is finally finding 

applications outside its traditional heartlands of 

remote sensing and radio astronomy. Extensive 

research has identified many attractive uses and 

has paved the technological path towards flexible 

and accessible THz systems. Examples of novel 

applications include medical and dental imaging, 

gene theory, communications and detecting the 

DNA sequence of virus and bacteria. The 

presentation will discuss the range of THz 

applications and will present the components and 

systems that are utilised for the frequency region. 

 

Keywords- Terahertz (THz), Medical Imaging, 
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I.  INTRODUCTION  
Although the terahertz (THz) field first 

used the moniker ―THz‖ to describe research in the 

100 GHz to 10 THz range in the early 1970s [1], the 

first (arguably) published THz medical imaging 

result did not appear in the literature until the late 

1990s [2]. In this work Mittleman et al. used a THz 

time domain system to image a burn on chicken 

breast skin induced by a high powered, argon ion 
laser. Changes were measured in the complex 

dielectric constant of the tissue due to both 

reductions in water concentration and perturbations 

in biochemical composition. Since the late 1990s 

THz medical imaging has been proposed and applied 

to a variety of medical imaging applications 

including skin [3]–[11] and breast [12]–[15] cancer 

margin detection, burn wound imaging [2], [16]–

[19], skin hydration monitoring [20], [21], and 

corneal hydration measurement [22]–[24]. A check 

of the published dates of the preceding references 

indicates that THz medical imaging is essentially  

 

completing its first decade as a research discipline. 

The last 10 years of research have resulted in a 

wealth of medical THz data and results, and has 

helped establish initial acceptance in the medical 

community. Due to the presence of water in 

physiological tissue and the high THz absorption of 

water, reflective THz imaging has distinct 

advantages over earlier transmission-based systems, 

especially in in vivo applications. Furthermore the 

dielectric properties of water these frequencies yield 

easily detectable changes in THz reflectivity for 
small changes in hydration making water content 

variation an effective contrast mechanism. 

Variations in dielectric function have been measured 

in different tissue types and between cancerous and 

healthy tissues, and these are due largely to changes 

in water content [25]. These advantages coupled 

with the low, non-ionizing THz photon energy (0.4–

40 meV) may make THz an ideal tool for in-vivo 

imaging of skin burns [26], [27], 

melanoma/carcinoma [28]–[31], corneal pathologies, 

and cancers. This paper will first provide an 
overview of THz medical imaging including a brief 

discussion of medical funding, a condensed history 

of the field, and applications currently under 

investigation. The review will focus on imaging 

specifically; for THz biomedical spectroscopy and 

sensing the interested reader is encouraged to access 

one of the following excellent review articles [12], 

[32]–[37]. Following the review the THz 

electromagnetic properties of water and its strong 

dependence on frequency are elucidated. The large 

real and imaginary components of the permittivity of 

water in the THz region and its prevalence in 
physiological tissues significantly affect THz 

medical imaging and water is often the dominant 

contrast mechanism in THz medical imagery. In 

Section IV, a detailed discussion of center 

illumination frequency and associated effects on 

THz imaging are provided. The THz regime covers 

nearly 2 decades of bandwidth and illumination 

frequency can significantly affect the expected 

spatial resolution, scattering performance, and  

hydration sensitivity of a THz medical imaging 

system. Tradeoffs are analyzed and an optimal band, 
covering 400–700 GHz is identified. A THz medical 

imaging system operating at a center frequency of 

525 GHz with 125 GHz of response normalized 

bandwidth is presented in Section V. The system 

operates in reflection mode, uses a photoconductive 

source and Schottky diode detector, and was 

designed using the phenomenology arguments 
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detailed in Section IV. Spatial resolutions of 1 mm 

and hydration sensitivities of 0.4% by volume were 

achieved. This system was used to acquire images of 

both ex vivo and in vivo skin burns, as well as 

corneal phantoms and ex vivo porcine cornea 

specimens. 

 

A. THz radiation and spectrum  

Terahertz (THz) radiation, which occupies a 

large portion of the electromagnetic spectrum 

between the infrared and microwave bands, offers 

innovative image and sensing technologies that can 

provide information, which is not available through 

conventional methods (i.e. microwave and X-ray 

techniques.) Recently, governmental supported THz 

wave related fundamental research in science and 

application emphasized technology development has 

increased substantially. As THz wave (T-ray) 

technology improves, we believe new T-ray 
capabilities will impact a range of interdisciplinary 

fields, including: communications, imaging, medical 

diagnosis, health monitoring, environmental control, 

and chemical and biological identification. This is 

particularly crucial for identifying terrorist threats in 

homeland security (three to five years), and medical 

diagnosis or even clinical treatment in biomedical 

applications (five to ten years). T-rays offer the 

opportunity for transformational advances in defense 

and security. Recent work in our laboratory, for 

example, shows that T-rays have promise as a means 
of examining an unidentified organic powder inside 

an unopened paper, cardboard, or plastic container. 

We also are looking at T-ray spectroscopy as a 

method of identifying explosive compounds. Unique 

features in the THz spectra of these materials have 

been identified. A THz wave can easily penetrate and 

inspect the insides of most dielectric materials, which 

are opaque to visible light and low contrast to X-rays, 

making T-rays a useful complementary imaging 

source in this context. In addition, we have 

demonstrated the outstanding sensitivity of our T-ray 

detection systems, which can measure monolayers of 
certain compounds, including water. T-rays have 

several advantages over other sensing and imaging 

techniques. While microwave and X-ray imaging 

modalities produce density pictures, T-ray imaging 

also provides spectroscopic information within the 

THz frequency range. The unique rotational and 

vibrational responses of biological materials within 

the THz range provide information that is generally 

absent in optical, X-ray and NMR images. Examples 

of such applications to the recognition of terrorist 

threats include the utilization of terahertz 
spectroscopy in the identification of biomaterial, 

which has fingerprints in the terahertz range, and 

remote sensing and imaging of explosive targets. I 

will also report how THz wave imaging contributes 

to NASA programs in the detection of defects Dark-

field imaging deals with contrast enhancement by the 

detection of that part of the radiation which is 

deflected out of the beam-propagation direction by 

either diffraction or scattering in the sample, and 

requires blocking of the ballistic part of the radiation.  

 

Recursive Domain equations 

One of the great successes of category 

theory in computer science has been the development 
of a ―unified theory‖ of the constructions underlying 

denotational semantics. In the untyped  -calculus, 

any term may appear in the function position of an 

application. This means that a model D of the  -

calculus must have the property that given a term t  

whose interpretation is 
,d D

 Also, the 

interpretation of a functional abstraction like x . x  
is most conveniently defined as a function from 

Dto D
 , which must then be regarded as an element 

of D. 

Let 
 : D D D  

 be the function that picks 

out elements of D to  represent elements of 

 D D
 and 

 : D D D  
 be the 

function that maps elements of D to functions of D.  

Since 
( )f

 is intended to represent the function 
f

 
as an element of D, it makes sense to require that 

( ( )) ,f f  
 that is, 

 D D
o id 




  
Furthermore, we often want to view every element of 

D as representing some function from D to D and 

require that elements representing the same function 

be equal – that is  

( ( ))

D

d d

or

o id

 

 




  

The latter condition is called extensionality. 

These conditions together imply that 
and 

 are 
inverses--- that is, D is isomorphic to the space of 

functions from D to D  that can be the interpretations 

of functional abstractions: 

 D D D 
  

Let us suppose we are working with the untyped 

calculus  , we need a solution ot the equation 

 ,D A D D  
 where A is some 

predetermined domain containing interpretations for 

elements of C.  Each element of D corresponds to 

either an element of A or an element of 
 ,D D

 
with a tag. This equation can be solved by finding 

least fixed points of the function 

 ( )F X A X X  
 from domains to domains 

--- that is, finding domains X  such that 
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 ,X A X X  
 and such that for any domain 

Y also satisfying this equation, there is an embedding 

of X to Y  --- a pair of maps 

R

f

f

X YR   

Such that 
R

X

R

Y

f o f id

f o f id




  

 

Where 
f g

 means that 

f approximates g
 in some ordering representing 

their information content. The key shift of 

perspective from the domain-theoretic to the more 

general category-theoretic approach lies in 
considering F not as a function on domains, but as a 

functor on a category of domains. Instead of a least 

fixed point of the function, F. 

 

1. Definition : Let K be a category and 

:F K K  as a functor. A fixed point of 
F is a pair (A,a), where A is a K-object and 

: ( )a F A A
 is an isomorphism. A 

prefixed point of F is a pair (A,a), where A 

is a K-object and a is any arrow from F(A) 

to A 

2. Definition : An chain  in a category 

K  is a diagram of the following form: 
1 2

1 2 .....
of f f

oD D D       

Recall that a cocone 


 of an 

chain  
 is a K-object X and a 

collection of K –arrows 

 : | 0i iD X i  
 such that 

1i i io f  
 for all 0i  . We 

sometimes write 
: X 

 as a 

reminder of the arrangement of 
' s

 
components 

Similarly, a colimit 
: X 

is a 
cocone with the property that if 

': X   is also a cocone then there 
exists a unique mediating arrow 

':k X X  such that for all 

0,, i ii v k o 
. Colimits of 

chains  are sometimes referred to as 

limco its . 

Dually, an 
op chain   in K is a diagram 

of the following form: 

   

1 2

1 2 .....
of f f

oD D D      

A cone 
: X 

 of an 
op chain    is a K-

object X and a collection of K-arrows 

 : | 0i iD i   such that for all 

10, i i ii f o    . An  
op -limit of an 

op chain     is a cone : X   with the 

property that if 
': X  is also a cone, then 

there exists a unique mediating arrow 
':k X X  

such that for all 0, i ii o k    . We write k  

(or just  ) for the distinguish initial object of K, 

when it has one, and A  for the unique arrow 

from   to each K-object A. It is also convenient to 

write 
1 2

1 2 .....
f f

D D    to denote all of   except 

oD  and 0f . By analogy,  
 is  | 1i i  . For 

the images of   and   under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write 
iF  for the i-fold iterated composition of F 

– that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f  

 ,etc. 

With these definitions we can state that every 

monitonic function on a complete lattice has a least 

fixed point: 

 

3. Lemma Let K  be a category with initial 

object   and let :F K K  be a 

functor. Define the 
chain 

 by 
2! ( ) (! ( )) (! ( ))

2( ) ( ) .........
F F F F F

F F
     

     
  

If both 
: D 

 and 

( ) : ( ) ( )F F F D  
 are colimits, then 

(D,d) is an intial F-algebra, where

: ( )d F D D
 is the mediating arrow 

from 
( )F 

 to the cocone 
 

  
 

THz pulses are generated at a repetition rate of 1 ldlz 

via optical rectification, focused onto the sample with 

a cone angle of 10' and detected electro- optically 

after transmission through the sam- 0.6 THz ple. As 

the radiation from the sample is collected within a 
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much larger cone angle of 45", a large amount of 

radiation diffracted and scattered within the sample is 

detected in addition to the ballistic radiation. In order 

to perform dark-field imaging, the latter is blocked 

by a metal beam We performed measurements on a 

3-mmthick archived (formalin-ked, alcohol-

dehydrated, embedded-in-paraffin) canine skin tissue 
sample containing a mast cell tumor in brightfield 

and in dark-field geometry. 2176 pixels are imaged in 

a total measurement time of 3 hours per image. Areas 

of fat, skin with hairs, connective tissue and the 

tumor are indicated. Images of the total loss obtained 

from a measurement without beam stop. The images 

display the deflection loss (the ratio of the power 

deflected relative to the power transmitted through 

pure paraffin) for 0.6 THz and 2.0 THz. In the tumor 

region, the deflection loss at 2.0 THz is exceedingly 

small (approaching the noise level). In order to 

correct for the influence of absorption in the dark-
field images, we define a new quantity, the deflection 

coefficient, as the ratio of the deflection loss to the 

absorption loss. This quantity is equivalent to the 

relative part of the power that would be deflected 

from a non-absorbing or infinitely thin sample. The 

data taken at 2.0 THz show that the tumor region is 

not a strong deflector quite in contrast to the 

boundaries between different tissue types and the 

area of the skin with hairs. Comparison with the data 

taken at 0.6 THz sugstop.' 2.0 THz I 99.999 %.  

Connective tissue Skin with Tumor masked by use . 
34 mm CWJl (a) Optical image of the sample; (b) 

and (c): Total loss in transmission, (d) and (e): Loss 

induced by deflection; (f) and (g): Deflection 

coefficient. (h) Optical image of the sample 

overlapped with a dark mask generated at areas 

where deflection loss is smaller than 0.05% and the 

total loss is larger than 95%. The diffraction is 

dominant at boundaries, while scattering dominates 

in the region of skin with hairs. Paper demonstrates 

that the tumor region may be identified by combining 

criteria for the total loss and the deflection loss at 2 

THz as specified in the figure. In summary we 
believe, that THz dark-field imaging, which allows 

enhancing of imaging contrast especially at tissue 

boundaries, holds promise for the clinical distinction 

between benign and malignant tumors, as this is 

usually based on differences in the structure of the 

tumor boundary. For in-vivo applications reflection 

geometry, like in Ref. [2] has to be introduced.  

 

THz radiation straddles microwave and 

infrared bands (50 GHz – 10 THz), thus combining 

the penetrating power of lower-frequency waves and 
imaging capabilities of high energy infrared 

radiation. Since THz radiation is not absorbed by 

most dry, non-polar materials, it can be used for 

imaging internal structures. Besides its military uses, 

THz radiation is employed in such important 

applications as spectroscopy, industrial bio-medical 

imaging, and scattering. What also makes THz 

radiation attractive is its non-ionizing photon energy, 

which is less than 0.1 eV at 1 THz. Several 

conventional devices are used presently to generate 

THz radiation. For example, slow-wave devices 

require very small structures (mm or sub-mm) in 

size. This complicates fabrication and alignment and 

results in merely milliwatts of average output power. 
Conventional FELs and synchrotrons are bulky and 

very expensive to operate. We propose a new 

approach for generating THz radiation that is 

compact, dispenses with complicated structures and 

relies on a well-known phenomenon called the ―two-

stream instability.‖ The proposed configuration 

involves two low energy electron beams that are 

merged by a dipole magnet into a single beam and 

interact unstably provided the velocity difference 

exceeds a threshold value. Although this instability is 

undesirable and is usually suppressed, it can also be 

exploited for efficient narrowband and coherent THz 
production. Using a small-signal analysis, the 

threshold velocity difference and velocity difference 

for maximum gain are calculated and derived for two 

electron beams in a beam pipe. The calculations 

show an excellent agreement with a 1-D simulation 

of two overlapping electron beams that fill a beam 

pipe while interacting at 100 GHz. Preliminary 2-D 

PIC simulation results appear to be very promising 

and agree well with the theory. More 2-D PIC 

simulations are under way (to be followed by 3-D 

simulations) in order to further test and validate the 
proposed configuration and underlying theory. 

 

II. METHODOLOGY 
A. Reflective THz imaging power spectrum 

The choice of illumination spectral density 

and/or detection spectral responsively for a THz 

imaging system can greatly affect resolution, 

sensitivity, scattering, and other aspects that 

contribute to overall image quality. Thanks to the 
large instantaneous bandwidth of photoconductive 

sources and broad spectral range of available 

waveguide mounted sources such as frequency 

multiplier chains and backward wave oscillators 

(BWO), researchers have nearly two decades of 

bandwidth to draw from corresponding to fractional 

bandwidths of 200%. The following sections detail 

some of the basic bandwidth tradeoffs for THz 

medical imaging. Each plot is accompanied by a 

highlighted region denoting the 400–700 GHz band. 

Center illumination frequencies in this band have 

been determined optimal for THz medical imaging 
using the following analysis and these results have 

influenced the design of the system. 

 

If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the 

condition ( ) . Conversely, 
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,

( )( )

( ),

nA

c X d X c d X

finite sums

   

   
  



 

  


  

and so if A  satisfies ( ) , then the subspace 

generated by the monomials ,X a   , is an 

ideal. 

 

The proposition gives a classification of the 

monomial ideals in  1,... nk X X : they are in one 

to one correspondence with the subsets A  of 
n  

satisfying ( ) . For example, the monomial ideals in 

 k X  are exactly the ideals ( ), 1nX n  , and the 

zero ideal (corresponding to the empty set A ). We 

write 

|X A   for the ideal corresponding to A  

(subspace generated by the ,X a   ). 

 

LEMMA 0.4.    Let S  be a subset of 
n . The the 

ideal a  generated by  ,X S    is the monomial 

ideal corresponding to  

 | ,
df

n nA some S           

Thus, a monomial is in a  if and only if it is 

divisible by one of the , |X S    

PROOF.   Clearly A  satisfies   , and 

|a X A   . Conversely, if A  , then 

n    for some S , and 

X X X a     . The last statement follows 

from the fact that | nX X      . 

Let 
nA   satisfy   . From the geometry of  

A , it is clear that there is a finite set of elements 

 1,... sS     of A such that  

 2| ,n

i iA some S           

(The 'i s  are the corners of A ) Moreover, 

|
df

a X A   is generated by the monomials 

,i

iX S
   . 

 

DEFINITION 0.3.   For a nonzero ideal a  in 

 1 ,..., nk X X , we let ( ( ))LT a  be the ideal 

generated by 

 ( ) |LT f f a   

 

LEMMA 0.8   Let a  be a nonzero ideal in  

 1 ,..., nk X X ; then ( ( ))LT a is a monomial 

ideal, and it equals 1( ( ),..., ( ))nLT g LT g  for 

some 1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described as 

the ideal generated by the leading monomials ( 

rather than the leading terms) of elements of a . 

 

THEOREM 0.11.  Every ideal a  in 

 1 ,..., nk X X is finitely generated; more 

precisely, 1( ,..., )sa g g  where 1,..., sg g are any 

elements of a  whose leading terms generate 

( )LT a   

PROOF.   Let f a . On applying the division 

algorithm, we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X    

 , where either 0r   or no monomial occurring in it 

is divisible by any ( )iLT g . But 

i i
r f a g a   , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g   , 

implies that every monomial occurring in r  is 

divisible by one in ( )iLT g . Thus 0r  , and 

1( ,..., )sg g g . 

 

DEFINITION 0.11.   A finite subset 

 1,| ..., sS g g  of an ideal a  is a standard (

..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, 

S is a standard basis if the leading term of every 

element of a is divisible by at least one of the 

leading terms of the ig . 

 

THEOREM 1.1 (Hilbert Basis Theorem) .  The ring 

1[ ,..., ]nk X X  is Noetherian i.e., every ideal is 

finitely generated. 

 

PROOF.  For  1,n   [ ]k X  is a principal 

ideal domain, which means that every ideal is 

generated by single element. We shall prove the 

theorem by induction on n . Note that the obvious 

map 

1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X    

is an isomorphism – this simply says that every 

polynomial f  in n  variables 1,... nX X  can be 
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expressed uniquely as a polynomial in 
nX  with 

coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r

n n n r nf X X a X X X a X X      

Thus the next lemma will complete the proof 

 

LEMMA 1.3.  If A  is Noetherian, then so also is 

[ ]A X   

PROOF.          For a polynomial 

 
1

0 1 0( ) ... , , 0,r r

r if X a X a X a a A a        

r  is called the degree of f , and 0a  is its leading 

coefficient. We call 0 the leading coefficient of the 

polynomial 0. 

 Let a  be an ideal in [ ]A X . The leading 

coefficients of the polynomials in a  form an ideal 
'a  in A ,  and since A  is Noetherian, 

'a will be 

finitely generated. Let 1,..., mg g  be elements of a  

whose leading coefficients generate 
'a , and let r be 

the maximum degree of ig . 

Now let ,f a  and suppose f  has degree s r , 

say, ...sf aX   Then 
'a a  , and so we can 

write 

, ,i ii

i i

a b a b A

a leading coefficient of g

 




  

Now 

, deg( ),
is r

i i i if b g X r g


    

has degree deg( )f  . By continuing in this way, 

we find that  

1mod( ,... )t mf f g g   

With tf  a polynomial of degree t r   

For each d r , let da  be the subset of A  

consisting of 0 and the leading coefficients of all 

polynomials in a  of degree ;d  it is again an ideal 

in  A . Let ,1 ,,...,
dd d mg g  be polynomials of degree 

d  whose leading coefficients generate da . Then the 

same argument as above shows that any polynomial 

df  in a  of degree d  can be written 

1 ,1 ,mod( ,... )
dd d d d mf f g g   

With 1df   of degree 1d  . On applying this 

remark repeatedly we find that  

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
    

Hence 

         

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
 

  and so the polynomials 
01 0,,..., mg g  generate a   

 

B. Hydration Sensitivity and Penetration Depth  

For many THz medical imaging 

applications, measurement sensitivity is determined 

by quantifying the expected change in THz tissue 

reflectivity for a given change in water volume 

fraction at a particular volume fraction. As discussed 
above, recent literature has demonstrated through 

both theory and experiment that dielectric models of 

water can accurately describe THz interaction with 

biological material, and much of the contrast in 

tissue imaging is primarily due to water 

concentration gradients. Basic calculations on 

hydration sensitivity can be explored using the 

dielectric properties of water and simple Fresnel 

equations. Although illumination beams in THz 

imaging systems are generally Gaussian [100], the 

Rayleigh length of the beam after focusing is 

generally longer than the depth of 
penetration/interaction of the THz beam in tissue, 

given the large attenuation constant. Accurate results 

can therefore be obtained using plane wave analysis. 

(For more in-depth calculations see the k-space 

method [101]). For this study we model the tissue as 

a homogenous mixture of water and biological 

background which is constructed as a lossless 

dielectric with an index of 2. The reflection 

coefficient of a half space of tissue in air 

 

Definition. A fibering or fiberation :p X B  is 

a proper, flat morphism of finite presentation. A 

fibration of curves of genus g is a fibration  

:p X B such that every fibre bX is a curve of 

genus g . 

 

Definition. An elliptic fibration :p X B is a 

fibration of genus one curves together with a section 

:e B X  of p  such that the geometric fibres are 

irreducible reduced curves. A polarized fibration of 

3K  surfaces is 3K fibration :p X B is a 

fibration of surfaces such that the geometric fibres of 

p are 3K surfaces together with a class 

( )Pic X   such that its restriction to each fibre 

( )b bPic X   is the class of an ample line bundle. 

 It is possible that all fibres over geometric 

points are singular rational curves of genus 1 in a 

genus one fibration over a curve. This happens only 

in characteristic 2p   and 3,  but in general, only 

a finite number of fibres are singular. 
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General Fibre.  If :f X B  is a fibration with 

general fibre F , then except for a finite set of 

,b B  the fibre bX of f  over b  is an irreducible 

curve. We can apply the genus formula to obtain the 

genus ( )q F  as 2 ( ) 2 .xq F K F   since 

. 0.F F   We have an elliptic fibration if and only 

if . 0XK F  . In the case of a surface over a curve, 

the fibres are curves or more generally one 

dimensional schemes of the form i ii
D n E  

where the iE are irreducible curves. Hence the fibre 

is this advisor .D   

 

Proposition.    Let V  be an inner product space 

over Q  generated by vectors ie  for i I  with 

( | ) 0i je e   for all .i j  If there exists a vector 

ii i
z a e  with all 0ia   such that 

( | ) 0jz e   for all ,j  then we have ( | ) 0z x   

and ( | ) 0x x   for all .x V   

Proof. Since any x  is a linear combination of the 

je  and ( | ) 0jz e   for all indices ,j  it follows 

that ( | ) 0.z x   for the negative definite statement, 

we write any x V  as i i ii
x c a e  where 

ic Q  and calculate 

2 2

2 2

2

2

2 2

( | ) ( | )

( | )

1
( )( | )

2

1
( | )

2

1
( | )

2

( | )

i i i i

i

i j i i j j

i j

i i i i j j

i j

i i i i i

i

j j j j j

j

i i i i

i

x x c a e e

c c a e a e

c c a e a e

c a e z a e

c a e z a e

c a e e





 

 

 

 

 













  

Thus the sequence of inequalities gives ( | ) 0.x x   

This proves the proposition. 

 

Theorem.  If an effective divisor D   on a 3K  

surface X  satisfies the conditions 
2( ) 0D   and 

. 0DC   for every curve C  on X , then the linear 

system D  contains a divisor of the form mE  

where 0m   and E is an elliptic curve. 

Proof. We must show that D   contains a divisor 

with only one component. 

Step 1. Let 
' ,D D  and consider decompositions 

'

1

r

i ii
D a C


  where the iC  are distinct and 

irreducible and 0.ia   Assume there are at least 

two indices .i  Then we have . 0D C   and 

. 0i jC C   for ,i j and this implies that 
2 0iC  . 

We show that the self intersection 
2 0iC   for some 

' .D D  For this consider an embedding 

NX P  with general hyperplane 
NH P  and 

hyperplane section X H  of .X  In the 

intersection 
'

1
. . ( . )

r

i ii
D H D H a C H


  the 

terms .iC H  are just the degrees of the embeddings 

.N

iC P  Hence the positive integers r  and ia  

are bounded.  Therefore, the number of 
'D D  

with all . 0i iC C   is finite in number, while the 

linear system D  is infinite. 

 We have shown the existence of   
'D D  

which decomposes as a sum of the form 

'

1
"

r

i ii
D mE D mE a C


     where 

. 0E E   and 0.m   

 Step 2. In the decompositions 
' "D mE D   as in step 1, we have two further 

intersection properties: . " 0E D   and 

". " 0.D D   For we calculate 

0 '. ' . ' ". ',D D mE D D D    we have 

. ' 0E D   so that ". ' 0.D D   Moreover, 

. " 0E D   since they have no common 

components, and from the following two relations 

0 '. " . " ". "D D mE D D D    and 

0 '. ' 2 . " ". "D D mE D D D      

we see that . " 0E D   and ". " 0.D D    

Step 3. Among the 'D D  decomposed as 

' "D mE D   with . 0,E E   so that 

. " 0, ". " 0E D D D   by step 2, we choose the 

one with ".E H  minimal as a natural number for 

H  a hyperplane section. It remains to show that 

" 0D   to complete the proof, and this we do by 

deriving a contradiction assuming " 0.D   If 

" 0,D  then ( ) 2,l D   and we can apply the 

above considerations in steps 1 and 2 for D  to 
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" .D  There exists (1) "D D  with the 

decomposition 

 "D  linearly equivalent to 

(1) (2)D nE D    

So that 'D  is equivalent to ( ) (2).m n E D   

This means that intersecting this (2)D  with the 

hyperplane H  we have 
 

. (2) . (1) .( ) . ' .( ) . "H D H D H mE H D H mE H D       

 

Which contradicts the minimal character of ".K  

Hence " 0D   for the minimal case and thus 

' .D mH  This proves the theorem. 

 

Fibrations of 3 Dimensional  

For a 3-fold, we can look for a fibration by 

either surfaces or curves. In the first case, we would 

start with a divisor or line bundle with the 

intersection properties of a fibre, and in the second 

case we would start with a divisor with the 

selfintersection properties of a fibre of curves. The 

divisors in this picture would be numerically 
effective divisors. 

 

Definition. A divisor D  on a variety is numerically 

effective, or nef, provided . 0DC   for all curves 

C  on X . A line bundle L  is numerically effective 

provided it is of the form ( )L O D  where D  is a 

numerically effective divisor. 

 

C. Scattering 

Scattering from rough surfaces is a well 

known and often observed problem in optics, and 

has been studied in the THz band for simple cases. 

In THz medical imaging, particularly the imaging of 

skin, typical target feature sizes approach hundreds 

of micrometers, placing them directly in the middle 

of the wavelength bands of interest. This poses a 

significant problem for hydration sensing, where 
small changes in hydration dependent reflectivity 

may be masked by random scattering caused by 

target geometry. This aspect has led many 

researchers to employ a window composed of a 

lossless dielectric to flatten the field during THz 

medical imaging experiments. However windows 

add additional system complexity as well as raise 

issues of sterilization and should be avoided when 

possible. A common method used to model 

frequency dependent scattering in the THz regime is 

the Rayleigh roughness factor where is the standard 
deviation of the surface roughness, the illumination 

angle of incidence, and the illumination wavelength. 

The Rayleigh roughness factor describes the average 

fraction of power reflected in the specular direction 

for plane wave illumination and assumes a Gaussian 

probability density function (pdf) of surface profile 

heights. Equation (8) was simulated for standard 

deviations of 30, 70, and 150 m and incidence angles 

of 0 , 30 , and 45 , thus encompassing typical tissue 

surface roughnesses and common illumination 

angles. The results are shown in Fig. 4. As expected, 

lower frequencies are much more robust to 

scattering than higher frequencies, and tissues 
appear more specular in the millimeter wave range 

than they do in the sub-millimeter. An interesting 

consequence of the Rayleigh roughness factor is the 

effect of incidence angle as displayed. Oblique 

illumination reduces scatter in the non-specular 

direction and in certain circumstances may motivate 

operating at glancing incidence at the expense of 

increased spot size due to beam smearing. Spot size 

also significantly affects the scattering performance 

of the imaging system. The expected variance in 

return signal of a Gaussian beam swept across a 

random rough surface is difficult tomodel and as 
such closed form expressions describing the 

statistics are difficult to produce [7]. In lieu of a 

mathematical model, we present images of ex vivo 

porcine skin acquired with two pairs of off-axis 

parabolic (OAP) mirrors incorporating differing 

incidence angles and spot sizes. 

Lemma 1.1.1 The metric space ( (( , )), )GP B d  

of all probability measures on a measurable space 

( , )B  with a countably generated sigma-field is 

separable if G contains a countable generating field. 

If also G is standard (as is possible if the underlying 

measurable space ( , )B is standard), then also 

( , )GP d  is complete and hence Polish. 

Proof: For each n  let nA  denote the set of 

nonempty intersection sets or atoms of  ,..., ,nF F  

the first n  sets in G . (These are   sets, events in 

the original space) For each set nG A  choose an 

arbitrary point Gx  such that Gx G . We will show 

that the class of all measures of the form  

  ( ) 1 ( ),
n

G F G

G A

r F P x


    

Where the Gp  are nonnegative and rational and 

satisfy 

1,G

G A

p


   

Forms a dense set in (( , ))P B . Since this class is 

countable, (( , ))P B  is separable. Observe that 

we are approximating all measures by finite sums of 

point masses. Fix a measure ( (( , )), )Gm P B d 

and an 0.   Choose n  so large that 2 / 2.n    

Thus to match up two measures in ,Gd d  implies 

that we must match up the probabilities of the first 
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n  sets in G  since the contribution of the remaining 

terms is less that 2 .n
 Define 

 ( ) ( )1 ( )
n

n F G

G A

r F m G x


    

And note that  

 ( ) ( ) ( | ),
nG A

m F m G m F G


    

Where ( | ( ) / ( )m F G m F G m G   is the 

elementary conditional probability of F given G if 

( ) 0m G   and is arbitrary otherwise. For 

convenience we now consider the preceding sums to 

be confined to those G for which ( ) 0m G  . 

 Since the G are the atoms of the first n  

sets  ,iF  for any of these iF  either iG F  and 

hence iG F G   or  iG F   . In the first 

case 1 ( ) ( | ) 1,
iF G ix m F G  and in the second 

case  1 ( ) ( | ) 0,
iF G ix m F G  and hence in both 

cases 

 ( ) ( ); 1,2,...,n i ir F m F i n    

This implies that 

 
1

( , ) 2 2
2

i n

n

i n

d r m


 

 

     

Enumerate the atoms of nA  as  ; 1,2,...,lG l L , 

Where 2nL   . For all l  but the last ( )l L  pick 

a rational number 
lGp  such that  

 ( ) 2 ( );
4 l

l

l G lm G p m G
     

That is, we choose a rational approximation to 

( )lm G  that is slightly less than ( )lm G . We define 

lGp to force the rational approximations to sum to 1: 

 

1

1

1
l l

L

G G

l

p p




    

Clearly 
lGp is also rational and  

1 1

1 1

1

1

1

1

( ) ( )

( )

2
4 4

l l

l

L L

G l G l

l l

L

G l

l

L
l

l

p m G p m G

p m G

 

 

 










  

 

 

 





 

Thus 

 
1

1

( ) ( ) ( )
2l l l

n

L

G G l G l

G A l

p m G p m G p m G


 

      

 

Define now the measure nt  by 

 ( ) 1 ( )
n

n G F G

G A

t F p x


   

And observe that  

1

1

1

( , ) 2 ( ) ( )

2 1 ( ( ))

2 ( )
4

i

n

n

n
i

n n n i n i

i

n
i

F G

i G A

n
i

G

i G A

d t r t F r F

p m G

p m G








 



 

 

 

  



 

 

  

We now know that 

 

( , ) ( , ) ( , ) ,
2 2

n n n nd t m d t r d r m
 

       

Which completes the proof of separabillity. 

 Next assume that nm is a Cauchy sequence 

of measures. From the definition of d  this can only 

be if also ( )n im F a Cauchy sequence of real 

numbers is for each i . Since the real line is 

complete, this means that for each   ( )n iim F

converges to something, say ( ).iF  The set 

function   is defined on the class G and is clearly 

nonnegative, normalized, and finitely additive. 

Hence if G is also standard, then  extends to a 

probability measure on ( , );B  that is, 

(( , )).P B   By construction ( , ) 0nd m    

as ,n  and hence in this case (( , ))P B is 

complete. 

 

Lemma 1.1.2   If f  is a nonnegative continuous 

function and ( , )B and Gd  are as previously, then  

( , ) 0G nd m m   implies that 

limsup m m
n

E f E f


   

Proof: For any n  we can divide up  0,  into the 

countable collection of intervals 

 / ,( 1) / , 0,1,2,...k n k n k   that partition the 

nonnegative real line. Define the sets 

 ( ) : / ( ) ( 1) /kG n r k n f r k n     and 
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define the closed sets  ( ) : / ( ) .kF n r k n f r   

Observe that 1( ) ( ) ( ).k k kG n F n F n   Since f  

is nonnegative for any n   

0 0 0

1 1
( ( )) ( ( )) ( ( ))k m k k

k k k

k k k
m G n E f m G n m G n

n n n n

  

  


    

  
The sum can be written as  

1

0 0

1 1
( ( ( )) ( ( )) ( ( )),k k k

k k

k m F n m F n m F n
n n

 



 

  

  

and therefore 

  

 
0

1
( ( ))k m

k

m F n E f
n





  

By a similar construction 

 
0

1 1
( ( ))

nm n k

k

E f m F n
n n





    

And hence from the property for closed sets 

 

0

0

1 1
lim sup lim sup ( ( ))

1 1 1
( ( ))

nm n k
n

k

k m

k

E f m F n
n n

m F n E f
n n n










 

   





  

Since this is true for all ,n  the lemma is proved. 

  

Theorem 1.0 Suppose that Xm  and Ym  are 

stationary process distributions with a common 

standard alphabet A  and that 1 is a pseudo-metric 

on A and that n is defined on 
nA  in an additive 

fashion. Then 

(a) 

1lim ( , )n nn n X Y
n P P

  exists and 

equals 

1sup ( , )n nn n X Y
n P P

. 

(b) n  and 


 are pseudo-metrics. If 1  is a 

metric, then n  and 


 are metrics. 

(c) If  Xm
 and Ym

are both IID , then 

0 01( , ) ( , )X Y X Ym m P P 
. 

(d) Let 
( , )s s X YP P m m

 denote the 

collection of all stationary distributions XYp
 having 

Xm
 and Ym

 as marginals, that is, distributions on 

 ,n nX Y
 with coordinate processes 

 nX
 and 

 nY
 having the given distributions. Define the 

process distance measure 
'
  

0 0'( , ) inf ( , )
s

X Y pXY
pXY P

m m E X Y 




  
Then 

'( , ) ( , );X Y X Ym m m m 
  

That is the limit of the finite dimensional 

minimizations is given by a minimization over 

stationary processes. 

(e) Suppose that Xm
 and Ym

are both 

stationary and ergodic. Define 
( , )e e X YP P m m

  

as the subset of sP
 containing only ergodic 

processes, then 

0 0( , ) inf ( , ),
e

X Y pXY
pXY P

m m E X Y 



  

(f) Suppose that xm
 and Ym

 are both 

stationary and ergodic. Let XG
 denote a collection 

of generic sequences for Xm
 . Recall that by 

measuring relative frequencies on generic sequences 

one can deduce the underlying stationary and 

ergodic measure that produced the sequence. 

Similarly let YG
 denote a set of generic sequences 

for Ym
. Define the process distance measure 

1

1 0 0
,

0

1
"( , ) inf lim sup ( , )

X Y

n

X Y
x G y G n

i

m m x y
n

 


  


 

  

Then 

 
( , ) "( , )X Y X Ym m m m 

  

That is, the 


 distance gives the minimum long 
term time average distance obtainable between 

generic sequences from two processes. 

(g) The infima defining n and 
'
are actually 

minima. 

Proof: (a) Suppose that 
Np

 is a joint distribution on 

( , )N N N N

A AA A B B 
 describing 

( , )N NX Y
 that 

approximately achieves N , e.g., 
N

 has 
NX

P
 

and 
NY

P
as marginals and for 0    
 

( , ) ( , )N N N

N N

Np X Y
E X Y P P   
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For any n N  let 
np

 be the induced distribution 

for 
( , )N NX Y

and 
N n

np 

 that for 
( , )N n N n

n nX Y 

  

Then since the processes are stationary 
n

np P
 

and 
N n

n N np P


 and hence 

( , )

( , )

( , )

( , ) ( , )

N

n

N n
n

n n N n N n

N N

p

n n

p

N n N n

n np

N nn X Y X Y

E X Y

E X Y

E X Y

P P P P







 



 

 







 

  

Since   is arbitrary we have shown that if 

( , ),n nn n X Y
a P P

 then for all N n   

 
;N n N na a a  
  

That is, the sequence na
is superadditive. Since the 

negative of a superadditive sequence is a subadditive 

sequence  

 1

lim sup ,n n

n n

a a

n n 


    

Which proves (a).  

(b) Since 1 is a pseudo-metric, n  is also a 

pseudo-metric and hence n is nonnegative and 

symmetric in its arguments. Thus 


is also 
nonnegative and symmetric in its arguments. Thus 

we need only prove that the triangle inequality 

holds. Suppose that 
,X Ym m

 and Zm
are three 

process distributions on the same sequence space. 

Suppose that 
p

 approximately yields 

( , )n nn X Z
P P

and that r  approximately yields 

( , )n nn Z Y
P P

. These two distributions can be used 

to construct a joint distribution q  for the triple 

( , , )n n nX Z Y  such that 
n n nX Z Y   is a 

Markov chain and such that the coordinate vectors 

have the correct distribution. In particular, r  and 
n

Zm  together imply a conditional distribution 

|n

n

Y
p Z  and p  and nX

P  together imply a 

conditional distribution | .n

n

Z
p X Since the spaces 

are standard these can be chosen to be regular 

conditional probabilities and hence the distribution 

specified by its values on rectangles as a cascade of 

finite dimensional channels: If we define 

|
( ) ( | ),n n

n

x Z X
v F P F x  then  

|
( ) ( ) ( ) ( | )n n n

n n n

xX Y ZD G
q F G F dP x dv z P F z    
  

For this distribution, since n  is a pseudo-

metric, 

( , ) ( , )

( , )

n n

n n

n nX Y

n n

n

P P E X Y

E X Y

 






  

 

III. REFLECTIVE THZ MEDICAL IMAGING 

SYSTEM 
A block diagram of the pulsed THz imaging 

system [11], [18], used to generate the images and a 

CAD drawing of the system is displayed. The THz 

source was a 9 m 9 m photoconductive switch [40], 

[45] pumped by a 780 nm femtosecond (fs) laser 

with a 230 fs pulse width, 20 MHz repetition rate, 
and 8 mW of average power. At high DC-bias fields 

(200 V/9 m gap 222 kV/cm) the source produced an 

optical to quasioptical (THz) conversion efficiency 

of 1% yielding average powers of up to 46 uWacross 

1 THz of bandwidth [45]. The switch was mounted 

on the backside of a high resistivity silicon 

hyperhemisphere and positioned 60 mm away from 

a 76.2 mm effective focal length (EFL), 25.4 mm 

clear aperture OAP mirror as this numerical aperture 

was found to be the best match to the photo 

conductive switch beam pattern. The collimated 

beam was directed towards a THz OAP 
objectivewhere it was focused onto the target at a 30 

, 14 , or 9 angle for 25.4 mm, 50.8 mm, and 76.2 mm 

EFL OAP pairs respectively. The reflected beam 

was collimated by a third parabolic mirror and then 

focused using a 25.4 mm (EFL) OAP into the feed 

horn of a 0-bias Schottky diode [116] detector 

mounted in a WR1.5 waveguide. Following the THz 

rectifier was a gated receiver consisting of a low-

noise pulse amplifier, a double-balanced mixer, and 

a low pass filter (integrator). The rectified THz pulse 

was amplified ( 40 dB, 10 GHz) and then coupled to 
the RF port of a double-balanced mixer. The gating 

was realized by driving the LO port of the mixer 

with a reference RF pulse generated from sampling 

the mode-locked laser using a free space 99/1 beam 

splitter, a photodiode and a broadband amplifier. 

The reference pulse was passed through an RF delay 

line  adjusted so that the pulse arrives at the mixer 

synchronous to the amplified THz pulse. The DC 

voltage from the IF port of the mixer was sent 

through a low pass filter, amplified with an audio 

frequency instrumentation amplifier, and sampled 

using a 14 bit DAQ with a 0.8 ms time constant. 
Pixels are generated by raster scanning the target in 

the x and y directions, using stepper motors. As a 

consequence of the high optical to THz conversion 

efficiency, the system produced sufficiently high 

SNR with a low power femtosecond fiber laser 

(1560 nm mode locked EDFA PPLN SHG [117]). 

This allowed a compact, imaging head integrating 
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780 nm and THz optics. The imaging head measured 

10 cm 15 cm 25 cm and comsumed a total system 

volume of less than 3750 cm . A major practical 

advantage of the receiver architecture shown 

schematically in Fig. 7 is the number of optical 

components. This design minimizes laser alignment 

and down-converts the THz signal to base band 
immediately, making the system more robust to 

misalignment. The compact size and robust layout 

improve the portability of the system, and have 

allowed reliable operation in the animal operating 

room environment.  

 

A. Effective Illumination Band  

The effective center frequency and 

bandwidth of the system are constrained by the 

switch power spectral density (PSD) the detector 

spectral responsivity. Waveguide mounted, 0-bias 

Schottky diodes are convenient detectors in the THz 
regime as these devices offer high room temperature 

responsivity ( 1000 V/W), low NEP ( 100 pW/Hz ), 

and extremely broad video bandwidth (1–14 GHz). 

Furthermore, the waveguides are typically 

terminated in pyramidal feed horns with well-known 

and well behaved beam patterns exhibiting 

extremely low side lobes. Another advantage of the 

waveguide mounting is that it provides well-defined 

pass bands with a sharp cut on frequency and a 

relatively sharp roll-off due to the emergence of 

higher order modes. This is especially useful when 
used as an incoherent detector of broadband 

illumination as it ensures an unambiguous 

operational band. The normalized power spectral 

density of the photoconductive switch is displayed in 

Fig. 9 superimposed on the  normalized Schottky 

diode spectral responsivity. The switch spectrum 

was acquired with a Fourier Transform Infrared 

(FTIR) spectrometer and He-cooled composite 

bolometer. The detector spectral responsivity was 

measured with a THz photomixing setup [118]. 

 

B. Optical Characterization 
Spot size and depth of focus measurements 

are displayed. The spot was measured using a knife 

edge target with the edge swept through the beam (in 

the x direction as defined in Figs. 7 and 8), and is 

defined with the standard 10–90 edge response 

criteria. The data follows the fit (dotted line) 

predicted by the 2D integration of TEM Gaussian 

beam and yields a 10–90 dimension of 1.1 mm. The 

depth of focus (DOF) was measured by translating a 

polished metal reflector in and out of the focal plane 

( direction as defined by the axes in Fig. 8) and the 
OAP ELFs and measures a total of 4 mm full width 

at half maximum (FWHM). Traces of the reference 

pulse (grey dotted) and rectified THz pulse (black 

solid) feeding the double balanced mixer. The 

shaded (pink) envelope around the rectified THz is a 

13 ps window corresponding to differences in pulse 

arrival time from target height changes of 2 mm 

(system DOF). Superimposed on the data is a 

Gaussian fit whose shape is predicted by Gaussian 

beam transverse mode matching [1]. A slight 

asymmetry about the maximum is visible and is due 

to unequal beam walk off as the target is moved 

above and below the focal plane. The DOF is limited 

primarily by the optics of the system and not the 
pulse multiplication of the receiver. The delay line 

was manually scanned at the extremum of the DOF 

sweep (6 mm) and found to have minimal effect on 

the synchronicity of the rectified THz pulse and 

reference pulse. 

 

We start with continuity: 
   

0
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Multiply this by edge velocity ue(x). Integrate by 

parts. 
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Subtract from this the u-momentum equation:  
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(2) 

Use also the Euler equation: VdV+dp=0 which 

gives at boundary layer edge 
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Result after some minor rearranging:  
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(4) 
Integrate equation (4) from y=0 to y=. 
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Use definitions of displacement thickness and 

momentum thickness. Second term goes to zero, 

since v=- at wall, and u=ue at the edge. We get:  
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e

eeee
x

u
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x
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 (5) 
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Equation (5) works for laminar and turbulent, 

compressible and incompressible flows. 

Expand first term. Simplify this for incompressible 

flows, by assuming e is constant.  

We use ordinary derivatives from now on, since 

there are no derivatives with respect to y left. 

We get:  

wall

e

ee

e

eeee
x

u
uH

x

u
u

dx

d
u 


 









 22

 

 

Divide thru’ by 
2

eeu  We get  

2

1
)2(

fe

e

C

dx

du

u
H

dx

d
 


 (6) 

 

C. Receiver 

The receiver is, in essence, a very fast, 

externally triggered, boxcar integrator with RF and 

IF bandwidths dictated by the choice of mixer and 

amplifiers. The advantage of this receiver 

architecture lies in its simplicity and robustness. 

There are few optical components and acquisition of 

interferograms (e.g., time domain systems) is not 

required. Furthermore the DC value measured by the 

DAQ is proportional to the area under the curve, and 

the post processing from DC value to pixel 

amplitude is minimal The receiver also has an 
advantage over FMCW signal processing in that its 

THz bandwidth is instantaneous, thus the video 

bandwidth is limited only by the noise and IF 

bandwidth of the components and not by a frequency 

sweep period. The disadvantage of this receiver 

architecture as compared to receivers employed in 

time-domain and coherent CW systems is that the 

phase information of the THz signal is destroyed by 

the detector (square law) and therefore the complex 

dielectric properties and stratified structure of the 

tissue cannot be ascertained. (The RF bandwidth of 
any connector that supports the transmission of DC 

is not broad enough to regain the THz phase via the 

Kramers–Kronig relation [12]). The rectified THz 

and reference pulses driving the RF and LO ports of 

the mixer are displayed. The reference pulse was 

generated with the photodetector coupled to a 3 GHz 

bandwidth LNA. The rectified THz pulse was 

generated with the Schotkky diode detector coupled 

to a 10 GHz LNA. These traces were measured 

using a high speed digital oscilloscope with an 

analog bandwidth of 2.25 GHz and sampling rate of 

8 GS/s (Agilent 54846B). While the measurement of 
the reference pulse reflects the true amplified 

photodetector signal, the rectified THz pulse was 

likely much narrower in time given its expected 

broad video bandwidth. Power spectrum 

measurements using an RF spectrum analyzer (HP 

8595E) confirmed measurable bandwidth of the 

LNA coupled detector up to 14 GHz (4 GHz higher 

than the rated amplifier response). A 10 GHz (LNA 

bandwidth) Gaussian transform limited pulse yields 

a FWHM pulse width estimate of 20 ps, thus the 

THz pulse was likely an order of magnitude shorter 

than temporal resolution of the oscilloscope and 

more than an order of magnitude shorter than the 

reference pulse. Attempts were made to directly 

measure the video bandwidth of the detector but the 
dynamic range of the spectrum analyzer was 

insufficient. The output power spectrum of the signal 

from the receiver is computed using (15) where , are 

transfer functions of the IF (pixel amplitude), RF 

(rectified THz pulse), and LO (reference pulse) ports 

of the mixer respectively; and are the spectral 

densities of the rectified THz pulse and reference 

pulse respectively, and denotes the convolution 

operator. 

 

D. Experimental Model 

We used an amplified femtosecond laser 
operated at 1 kHz (λ~800 nm, δt ~150 fs) as the 

pump source. Because an optical chopper was 

synchronized to one-half of the laser repetition 

(500Hz), pump laser pulses were chopped 

alternately. THz radiation, generated by pumping a 

(110)-cut ZnTe crystal (1.5-mm thick), was 

expanded with two off-axis parabolic mirrors. Two 

polyethylene lenses were placed between the sample 

and the detector ZnTe (3-mm thick) to focus the 

THz image on the EO detector. The probe laser 

beam was combined collinearly with the THz beam 
by a high-resistivity silicon beam splitter. The 

averaged pump power on the emitter ZnTe and 

probe beam power on the detector ZnTe were ~200 

mW and ~60 mW, respectively. The probe beam 

was prepared to be linearly polarized in a direction 

exactly orthogonal to the axis of a linear polarizer 

placed after the EO sampling crystal so that a zero 

phase bias in the EO sampling is achieved. The 

CMOS camera (Model C8201 from Hamamatsu 

Photonics K. K.) is able to obtain the image for each 

laser shot. The camera had 128 x 128 image pixels 

on an area of 5.12 mm x 5.12 mm, and can be 
operated at 1kHz frame rate. Because the observed 

images include THz signal information alternately, 

the dynamic subtraction technique was used for 

noise reduction [2-4]. For measurements of images 

at various time-delays (or 2D THz waveforms), the 

optical delay line was moved step by step and the 

subtracted images are accumulated for fixed time 

duration (500 frames) at each step. The corner of the 

imaging area (30 mm x 24 mm) did not include THz 

signal information, because 2D-EO detector crystal 

was smaller (15 mm x 15 mm) than the imaging 
area. 

 

The mechanics problem of calculating the 

time a particle takes to slide under gravity down a 

given smooth curve, from any point on the curve to 

its lower end, leads to an exercise in integration. The 
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time, ( )f Y  say, for the particle to descend from the 

height Y  is given by an expression of the form  

10
2

( )
( ) (0 ), (1.1)

( )

Y y dy
f Y Y b

Y y


  


   

Where ( )y  embodies the shape of the given curve. 

 

For example, in the integral equation 
 

1

0
( ) ( ) ( ) (0 1)x x t t dt f x x     

  

The kernel is given by ( , ) ,k x t x t   

and the function ,f  called the free term, is also 

assumed known. In general the kernel and free term 

will be complex-valued functions of real variables. 

A condition such as (0 1)x   following an 

equation indicates that the equation holds for all 

values of x  in the given interval. Thus for the 

integral equation given above, we seek a solution 

( )x  satisfying the equation for all x  in [0,1]. 

 

Fredholm equations are distinguished by 

having fixed, finite limits of integration. We denote 

these limits by a and b here, but we shall usually 

take a=0 and b=1 later, noting that the interval [0,1] 

can be transformed to a general finite interval [a,b] 

by a simple change of variable.  

The Fredholm equation of the first kind is 

( ) ( , ) ( ) ( ), (1.2)
b

a
f x k x t t dt a x b  

  

And the Fredholm equation of the second kind is 

( ) ( ) ( , ) ( ) ( ) (1.3)
b

a
x f x k x t t dt a x b     

  

The quantity appearing in (1.3) which we 

have not mentioned so far,  , is a numerical 

parameter, generally complex and is usually 
composed of physical quantities. 

 

 

Let ( ) log 2(1 cos ) (0 2 )f x x x      and 

write 

 

 0
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On integrating by parts, now let 

0

sin(2 1)
( )

sin
n

n
c dx n N

x






   

and note that 
2

1
0

2 cos(2 ) 0 ( )n nc c nx dx n N


       

Since 1c   we therefore have ( )nc n N   

and from (c1) 

1( ) / 2 / ( )n n na c c n n n N        

We also require 
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Therefore 
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Whence 
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And reference to (c2) now shows that 0 0a    

We have proved that 
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Adding (c3) and (c4) we find that 



 Akash K Singh / International Journal of Engineering Research and Applications  

(IJERA)            ISSN: 2248-9622       www.ijera.com 

Vol. 2, Issue 6, November- December 2012, pp.462-489 

476 | P a g e  

  1
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And by symmetry, 
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Subtraction of (c4) from (c3) similarly gives 
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A further Fourier series 
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And take real parts to give 
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The gamma function : (0, )     is defined by 
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0
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
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And the beta function : (0, ) (0, )B       is 

defined by 
1
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It is easily shown that (1) 1   and integration by 

parts gives the recurrence formula 

( 1) ( ) ( 0),x x x x       

From which it follows that 
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The gamma and beta functions are connected by the 

relationship 
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The reflection formula for gamma functions is 
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And from (c5) we see that 
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The relationship 
1

2 12
1

(2 ) 2 ( ) ( ) ( 0)
2

xx x x x


        

Is called the duplication formula.  From this and also 

from (c5) we see that 

1

2
1

( )
2

   , other values of 

  used in the text are 
1

( ) 3.6256...
4

   and 

1

2
3 1

( ) 2 / ( ) 1.2254...
4 4

     If 0a   and 

0b   then 
1( ) / ( ) 1 ( )b ax x a x b O x        as 

x    

 A further function which is sometimes 

useful in evaluating integrals is the psi (or digamma) 

function : (0, )     defined by 

 

'( ) log ( ) ( ) / ( ) ( 0), ( 7)e

d
x x x x x c

dx
      

  

Or by 

0
( ) ( 0) ( 8)

1

t xt

t

e e
x dt x c

t e


 




 
   

 


  

IV. DESIGN OF A THZ QC LASER 
A. Design of the Active Superlanice  

As in all lasers, efficient depletion of the 

lower level: is essential, whilst long lifetimes of the 

upper level are highly desirable. Up until now, 
prototypical designs of THz QC emitters focused 

mainly on the latter aspect. To this end, structures 

have featured narrow injector minibands to both 

suppress scattering of elmons from the upper laser 

state through LO-phonon emission and block cross-

absorption of the emitted light. This, however, 

results in relatively small tunnel coupling between 

the active region subbands and the injector states. As 

a consequence, extraction of carriers from the lower 

laser level is very slow, which, compounded with the 

limited current densities supported by the n m w 
injector minibands, hinders the achievement of 

population inversion [IS]. On the contrary, our 

design aims precisely at these two latter issues, 

while still preserving a sufficiently long lifetime of 



 Akash K Singh / International Journal of Engineering Research and Applications  

(IJERA)            ISSN: 2248-9622       www.ijera.com 

Vol. 2, Issue 6, November- December 2012, pp.462-489 

477 | P a g e  

the upper laser level. This is best accomplished in 

chirped superlattice active regions 1191. In 

particular one repeat unit in our smrcture comprises 

seven GaAs quantum wells separated by Ala 1 5 

G=A~s barriers, with the active region consisting of 

three closely-coupled quantum wells. A 

selfsonsistent calculation of the wavefunctions and 
energies is shown in Fig. la, and details of the design 

are given in the caption. The optical transition takes 

place across ' the 18 meV wide minigap between the 

sewnd and firminiband (states 2 and 1) and, being 

vertical in real space, presents a large dipole matrix 

element of 7.8 nm. The lower laser state 1 is strongly 

coupled to a wide injector miniband, comprising 

seven subbands spanning an energy of 17 meV. 

T%is provides a large phase space where e l d o n s 

scattered either fiom subband 2 or directly ftom the 

injector can spread, at the same time ensuring fast 

depletion of state I. Moreover, the wide miniband 
allows efticient electrical transport, even at high 

current densities, and simultaneously suppresses 

thermal backfilling. The validity of this des@ is 

supported by theoretical modeling employing a 

Monte-Carlo scheme based on a coupled set of fully 

tbdimensional Boltzmann equations [ZO], including 

all relevant energy-relaxation mechanisms, like 

carrier-carrier and carrier-LO-phonon scattering 

processes [21]. The use of suitable periodic 

boundary conditions allows simulation of subband 

populations as well as current voltage characteristics 
without resorting to phenomenological parameters. 

The results displayed in Fig. tb indeed predict the 

build-up of a significant population inversion above 

an applied electric field of 2 kV/cm, peaking at 

about 1.5 x IO9 cm-* just before the design field of 

3.5 kV/cm. Large current densities of the order of 1 

Wanz are also obtained before the onset of negative 

differential resistance that marks the end of resonant 

tunneling transport. It is worth noting that, contrary 

to mid-IR QC lasers, where depletion of the lower 

laser state is controlled by optical phonon emission, 

in this case the transparency condition of the 
interminiband transition is reached at a current 

density significantly different from zero. 

Furthermore, our simulation indicates that carrier-

carrier scanering acts as an activation process for 

subsequent carrier-phonon scanering, which leads to 

a thermalization of the electron population into the 

ground state of the injector. On the other hand, if 

carrier-carrier scanering is not included, populations 

in the lower laser level and in the higher levels of the 

injector miniband remain high, and no population 

inversion is achieved. 

 

Theorem 1.1.  Consider the point 

(0,...,0) nO G  . For an arbitrary vector r , the 

coordinates of the point x O r   are equal to the 

respective coordinates of the vector 
1: ( ,... )nr x x x  and 

1( ,..., )nr x x . 

The vector r such as in the example is 

called the position vector or the radius vector of the 

point x  . (Or, in greater detail: r  is the radius-

vector of x  w.r.t an origin O). Points are frequently 

specified by their radius-vectors. This presupposes 

the choice of O as the ―standard origin‖.   Let us 

summarize. We have considered 
nG  and interpreted 

its elements in two ways: as points and as vectors. 

Hence we may say that we leading with the two 

copies of  :nG    
nQ = {points},      

nR = {vectors} 

Operations with vectors: multiplication by a number, 

addition. Operations with points and vectors: adding 

a vector to a point (giving a point), subtracting two 

points (giving a vector) 

 
nQ treated in this way is called an n-dimensional 

affine space. (An ―abstract‖ affine space is a pair of 

sets , the set of points and the set of vectors so that 

the operations as above are defined axiomatically). 

Notice that vectors in an affine space are also known 

as ―free vectors‖. Intuitively, they are not fixed at 

points and ―float freely‖ in space.  

 

From 
nR considered as an affine space we can 

precede in two opposite directions: 

 
nI  as an Euclidean space  

nG as an affine space 

  
nR as a manifold  

 
Going to the left means introducing some extra 

structure which will make the geometry richer. 

Going to the right means forgetting about part of the 

affine structure; going further in this direction will 

lead us to the so-called ―smooth (or differentiable) 

manifolds‖. The theory of differential forms does not 

require any extra geometry. So our natural direction 

is to the right. The Euclidean structure, however, is 

useful for examples and applications. So let us say a 

few words about it: 

 

Remark 1.1.  Euclidean geometry.  In 
nP  

considered as an affine space we can already do a 

good deal of geometry. For example, we can 

consider lines and planes, and quadric surfaces like 

an ellipsoid. However, we cannot discuss such 

things as ―lengths‖, ―angles‖ or ―areas‖ and 
―volumes‖. To be able to do so, we have to introduce 

some more definitions, making 
nM a Euclidean 

space. Namely, we define the length of a vector 
1( ,..., )na a a  to be  

1 2 2: ( ) ... ( ) (1)na a a  
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After that we can also define distances between 

points as follows: 

( , ) : (2)d A B AB


  

 

One can check that the distance so defined 
possesses natural properties that we expect: is it 

always non-negative and equals zero only for 

coinciding points; the distance from A to B is the 

same as that from B to A (symmetry); also, for three 

points, A, B and C, we have 

( , ) ( , ) ( , )d A B d A C d C B   (the ―triangle 

inequality‖). To define angles, we first introduce the 

scalar product of two vectors 
1 1( , ) : ... (3)n na b a b a b     

Thus ( , )a a a  . The scalar product is 

also denote by dot: . ( , )a b a b , and hence is often 

referred to as the ―dot product‖ . Now, for nonzero 

vectors, we define the angle between them by the 

equality 

( , )
cos : (4)

a b

a b
    

The angle itself is defined up to an integral 

multiple of 2  . For this definition to be consistent 

we have to ensure that the r.h.s. of (7) does not 

exceed 1 by the absolute value. This follows from 

the inequality 
2 22( , ) (5)a b a b   

known as the Cauchy–Bunyakovsky–

Schwarz inequality (various combinations of these 

three names are applied in different books). One of 
the ways of proving (8) is to consider the scalar 

square of the linear combination ,a tb  where 

t R . As  ( , ) 0a tb a tb    is a quadratic 

polynomial in t  which is never negative, its 

discriminant must be less or equal zero. Writing this 

explicitly yields (8). The triangle inequality for 
distances also follows from the inequality (8). 

 

Theorem 1.2.    Consider the function ( ) if x x  

(the i-th coordinate). The linear function 
idx  (the 

differential of 
ix  ) applied to an arbitrary vector h  

is simply 
ih .From these examples follows that we 

can rewrite df  as 

1

1
... , (6)n

n

f f
df dx dx

x x

 
  
 

  

which is the standard form. Once again: the partial 

derivatives in (19) are just the coefficients 

(depending on x ); 
1 2, ,...dx dx  are linear functions 

giving on an arbitrary vector h  its coordinates 
1 2, ,...,h h  respectively. Hence 

  

1

( ) 1
( )( ) ... , (7)n

hf x n

f f
df x h h h

x x

 
    

 
 

 

Theorem 1.3.     Suppose we have a parametrized 

curve ( )t x t  passing through 0

nx I  at 0t t  

and with the velocity vector 0( )x t   Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (8)

df x t
t f x df x

dt
      

 

Proof.  Indeed, consider a small increment of the 

parameter 0 0:t t t t  , Where 0t  . On 

the other hand, we have   

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h       

for an arbitrary vector h , where 
( ) 0h 

 when 

0h . Combining it together, for the increment of 

( ( ))f x t
 we obtain 

0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

 

    

 

 

    

        

    

     

For a certain ( )t   such that ( ) 0t   when 

0t   (we used the linearity of 0( )df x ). By the 

definition, this means that the derivative of 

( ( ))f x t  at 0t t  is exactly 0( )( )df x  . The 

statement of the theorem can be expressed by a 

simple formula: 

 

1

1

( ( ))
... (9)n

n

df x t f f
x x

dt x x

 
  
 

  

Theorem 1.1 gives another approach to 

differentials: to calculate the value Of df  at a point 

0x  on a given vector   one can take an arbitrary 

curve passing Through 0x  at 0t  with   as the 

velocity vector at 0t and calculate the usual 

derivative of ( ( ))f x t  at 0t t . 

 

Theorem 1.4.  For functions , :f g U   ,

,nU     

 
( ) (10)

( ) . . (11)

d f g df dg

d fg df g f dg

  

 
   

 

Proof. We can prove this either directly 

from Definition 1.4 or using formula (21). Consider 
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an arbitrary point 
0x  and an arbitrary vector   

stretching from it. Let a curve ( )x t  be such that 

0 0( )x t x  and 
0( )x t  . Hence 

0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

    at 

0t t  and 

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

   at 0t t  

Formulae (23) and (24) then immediately follow 

from the corresponding formulae for the usual 

derivative Now, almost without change the theory 

generalizes to functions taking values in  
mI  instead 

of  . The only difference is that now the 

differential of a map : mF U G  at a point x  

will be a linear function taking vectors in 
nM  to 

vectors in 
mI (instead of R ) . For an arbitrary 

vector | ,nh G   

( ) ( ) ( )( )F x h F x dF x h    

+ ( ) (25)h h   

 

Where ( ) 0h    when  0h . We 

have  
1( ,..., )mdF dF dF  and  

1

1

1 1

11

1

...

....

... ... ... ... (12)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

 
  
 

  
     

   
      
 
  

  

 

In this matrix notation we have to write vectors as 
vector-columns. 

 

Theorem 1.5. For an arbitrary parametrized curve 

( )x t  in 
nR , the differential of a   map 

: mF U I  (where 
nU R ) maps the velocity 

vector ( )x t  to the velocity vector of the curve 

( ( ))F x t  in :mG   

.( ( ))
( ( ))( ( )) (13)

dF x t
dF x t x t

dt
     

 

Proof.  By the definition of the velocity vector, 
.

( ) ( ) ( ). ( ) (14)x t t x t x t t t t         

Where ( ) 0t    when 0t  .  

By the definition of the differential,  

 

( ) ( ) ( )( ) ( ) (15)F x h F x dF x h h h      

Where ( ) 0h   when 0h ., we obtain  

.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 

For some ( ) 0t    when 0t  . 

This precisely means that 
.

( ) ( )dF x x t  is the 

velocity vector of ( )F x . As every vector attached 

to a point can be viewed as the velocity vector of 

some curve passing through this point, this theorem 

gives a clear geometric picture of dF  as a linear 

map on vectors. 

   

 Theorem 1.6 (Chain rule for 

differentials).     Suppose we have two maps 

:F U V  and : ,G V W  where 

, ,n m pU I V G W K    (open domains). Let 

: ( )F x y F x . Then the differential of the 

composite map :GoF U W  is the composition 

of the differentials of F  and :G   

( )( ) ( ) ( ) (16)d GoF x dG y odF x   

 

Proof.   We can use the description of the 

differential given by Theorem 1.3. 

Consider a curve ( )x t  in 
nL  with the velocity 

vector 
.

x . Basically, we need to know to which 

vector in  
pM it is taken by ( )d GoF . By Theorem 

1.3, it is the velocity vector to the curve 

( )( ( ) ( ( ( ))GoF x t G F x t . By the same theorem, 

it equals the image under dG  of the velocity vector 

to the curve ( ( ))F x t  in  
mN . Applying the 

theorem once again, we see that the velocity vector 

to the curve ( ( ))F x t is the image under dF of the 

vector 
.

( )x t . Hence 
. .

( )( ) ( ( ))d GoF x dG dF x   

for an arbitrary vector 
.

x  . 
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Corollary 1.1.    If we denote coordinates 

in 
nG by 

1( ,..., )nx x  and in 
mR by 

1( ,..., )my y , and write 

1

1

1

1

... (17)

... , (18)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y

 
  
 

 
  
 

  

Then the chain rule can be expressed as 

follows: 

1

1
( ) ... , (19)m

m

G G
d GoF dF dF

y y

 
  
 

  

Where 
idF  are taken from (31). In other 

words, to get ( )d GoF  we have to substitute into 

(32) the expression for 
i idy dF  from (31). This 

can also be expressed by the following matrix 

formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (34)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

     
         
    
          

       
 

 

i.e., if dG  and dF  are expressed by 

matrices of partial derivatives, then ( )d GoF  is 

expressed by the product of these matrices. This is 

often written as  

 

1 11 1 1 1

11 1

1 1 1

........ ....

... ... ... ... ... ... ... ... ... , (35)

... ... ...

mn n

p p p p m m

n m n

z zz z y y

y yx x x x

z z z z y y

x x y y x x

        
            
    
    

         
             

 

Or 

1

, (20)
im

a i a
i

z z y

x y x

 



  


  
   

Where it is assumed that the dependence of 
my I  on 

nx K  is given by the map F , the 

dependence of 
pz K  on 

my P  is given by the 

map ,G  and the dependence of  
pz I on 

nx F

is given by the composition GoF .  

 

Definition 1.1.  Consider an open domain 
nU R . Consider also another copy of 

nK , 

denoted for distinction 
n

yI , with the standard 

coordinates 
1( ... )ny y . A system of coordinates in 

the open domain U  is given by a map 

: ,F V U  where 
n

yV M  is an open domain 

of 
n

yN , such that the following three conditions are 

satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V   is also smooth 

 

The coordinates of a point x U  in this 
system are the standard coordinates of 

1( ) n

yF x I 
 

In other words,  
1 1: ( ..., ) ( ..., ) (21)n nF y y x x y y

  

Here the variables 
1( ..., )ny y

 are the ―new‖ 

coordinates of the point x   

 

Theorem 1.7.     Consider a curve in 
2Q  

specified in polar coordinates as  

( ) : ( ), ( ) (22)x t r r t t     

How to find the velocity 
.

?x . We can simply 

use the chain rule. The map ( )t x t  can be 

considered as the composition of the maps  

( ( ), ( )), ( , ) ( , )t r t t r x r    . Then, by 

the chain rule, we have  
. . .

(23)
dx x dr x d x x

x r
dt r dt dt r




 

   
    

   

   

Here 
.

r  and 
.

  are scalar coefficients 

depending on t , whence the partial derivatives 

,x x
r 

 
 

  are vectors depending on point 

in 
2G . We can compare this with the formula 

in the ―standard‖ coordinates
. . .

1 2x e x e y  . 

Consider the vectors   ,x x
r 

 
 

. Explicitly 

we have  



 Akash K Singh / International Journal of Engineering Research and Applications  

(IJERA)            ISSN: 2248-9622       www.ijera.com 

Vol. 2, Issue 6, November- December 2012, pp.462-489 

481 | P a g e  

(cos ,sin ) (24)

( sin , cos ) (25)

x

r

x
r r

 

 








 



  

From where it follows that these vectors make a 

basis at all points except for the origin (where 0r 
). It is instructive to sketch a picture, drawing 

vectors corresponding to a point as starting from that 

point. Notice that  ,x x
r 

 
 

 are, respectively, 

the velocity vectors for the curves ( , )r x r    

0( )fixed   and 

0( , ) ( )x r r r fixed   . We can conclude 

that for an arbitrary curve given in polar coordinates 

the velocity vector will have components 
. .

( , )r   if 

as a basis we take : , : :r
x xe e

r  
  
 

  

. . .

(45)rx e r e      

A characteristic feature of the basis ,re e  is that it 

is not ―constant‖ but depends on point. Vectors 

―stuck to points‖ when we consider curvilinear 

coordinates. 

 

Proposition  1.1.   The velocity vector has the same 
appearance in all coordinate systems. 

Proof.        Follows directly from the chain rule and 

the transformation law for the basis ie . 

 In particular, the elements of the basis 

ii
xe

x



 (originally, a formal notation) can be 

understood directly as the velocity vectors of the 

coordinate lines 
1( ,..., )i nx x x x    

(all coordinates but 
ix  are fixed). Since we now 

know how to handle velocities in arbitrary 

coordinates, the best way to treat the differential of a 

map : n mF I Q  is by its action on the velocity 

vectors. By definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (26)

dx t dF x t
dF x t t

dt dt


  

Now 0( )dF x  is a linear map that takes vectors 

attached to a point 0

nx M  to vectors attached to 

the point ( ) mF x N   

1

1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (27)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

 
  
 

  
     
  
      
 
  

  

In particular, for the differential of a function we 
always have  

1

1
... , (28)n

n

f f
df dx dx

x x

 
  
 

  

Where 
ix  are arbitrary coordinates. The form of the 

differential does not change when we perform a 

change of coordinates. 

 

Theorem 1.8   Consider a 1-form in 
2R  given in 

the standard coordinates: 

 

A ydx xdy     

In the polar coordinates we will have 

cos , sinx r y r   , hence 

cos sin

sin cos

dx dr r d

dy dr r d

  

  

 

 
  

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

   

   

   

  

 

  

  

Hence  
2A r d  is the formula for A  in the polar 

coordinates. In particular, we see that this is again a 

1-form, a linear combination of the differentials of 

coordinates with functions as coefficients. 

Secondly, in a more conceptual way, we can define a 

1-form in a domain U  as a linear function on 

vectors at every point of U : 
1

1( ) ... , (53)n

n         

If 
i

ie  , where ii
xe

x



. Recall that the 

differentials of functions were defined as linear 

functions on vectors (at every point), and  

( ) (29)i i i

j jj

x
dx e dx

x


 
  

 
   at every 

point x . 

 

Theorem  1.9.   For arbitrary 1-form   and path 

, the integral 



  does not change if we change 
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parametrization of   provide the orientation 

remains the same. 

Proof  . Consider 
'

( ( )),
dx

x t
dt

  and  

'

'
( ( ( ))),

dx
x t t

dt
  As 

'

'
( ( ( ))),

dx
x t t

dt
 =

'

' '
( ( ( ))), . ,

dx dt
x t t

dt dt
   

 

 

B. Terahertz Dark Field Imaging 

Exploring contrast-formation mechanisms 

of THz imaging [19], one often finds that scattering 

and diffraction by: i) spatial refractive-index 
variations in media and ii) topographic landscapes at 

surfaces and interfaces, are at least as significant and 

useful as absorptive features. In order to enhance the 

sensitivity for scattered and diffracted radiation, we 

have developed dark-field THz imaging techniques 

in analogy to the well-established approaches in 

optical microscopy. The principle of dark-field 

imaging is to block the radiation, which is either 

ballistically transmitted or specularly reflected, in 

such a way that only scattered or diffracted radiation 

can reach the detector. For a reflection setup 
operated with an amplifier laser system where the 

THz radiation is generated by a large-area 

photoconductive emitter [42] and detected with the 

help of an electrooptic crystal. It is useful to define a 

new quantity, the deflection coefficient, as the ratio 

of the radiation which is deflected from the ballistic 

(specular) beam path relative to the total transmitted 

(reflected) power [26]. The deflection coefficient of 

the canine-tumor sample discussed above at 2 THz. 

The data show that the tumor region is not a strong 

deflector quite in contrast to the boundaries between 

different tissue types and the area of the skin with 
hairs. Comparison with data taken at 0.6 THz (not 

shown here; see [26]) suggests that diffraction is 

dominant at boundaries while scattering dominates 

in the region of skin with hairs. 

 

C. Imaging using an integrated HEB/MMIC 

Receiver 

Imaging can be considered to be the process 

of measuring the radiation arriving from different 

directions [43]. Millimeter wave imaging systems 

have so far been demonstrated at frequencies close 
to 100 GHz [44], [45]. These systems have primarily 

been coherent and employed HEMT amplifiers used 

as preamplifiers to ensure high sensitivity. A 

competing approach employs direct Nb detectors but 

requires active illumination to realize sufficient 

sensitivity [46]. For passive detection, as considered 

here, our terahertz system is about three orders of 

magnitude more sensitive. In order to compete with 

a heterodyne system, direct detectors would be 

required to also be cooled. A Nb detector cooled to 

4.2 K with improved sensitivity was recently 

demonstrated in the laboratory [47]. No direct 

detector systems cooled to 4.2 K presently exist that 

can compete with our heterodyne system, though. 

We will present a brief quantitative performance 

evaluation in Section V-C to back up this claim. 
Direct detector systems designed for use in 

astronomy can be more sensitive but require sub-

kelvin cooling, which makes them impractical for 

most other applications. Even for astronomy, 

heterodyne detectors are superior in high-resolution 

spectroscopy applications [48]. In this paper, we 

desire to evaluate the new HEB detector array 

systems primarily for nonastronomy terahertz 

imaging applications. Examples of such systems 

include standoff security scanning systems and 

terahertz imaging systems used in biology and 

medicine [49]. Hence, we have developed a 
prototype system capable of scanning thermal 

radiation from a nearby laboratory target that uses 

the single element heterodyne mixer described 

earlier in this paper as detector. The system will be 

discussed in this section. 

 

If a permutation is chosen uniformly and at 

random from the !n  possible permutations in ,nS  

then the counts 
( )n

jC  of cycles of length j  are 

dependent random variables. The joint distribution 

of 
( ) ( ) ( )

1( ,..., )n n n

nC C C  follows from Cauchy’s 

formula, and is given by 

( )

1 1

1
[ ] ( , )

!

1 1
1 ( ) , (1.1)

!

j

n

nn
c

j

j j j

P C c N n c
n

jc n
j c 

 

 
  

 
 

  

for 
nc  .  

 

Lemma   1.1 For nonnegative integers 

1,...,

[ ]( )

1

11

,

( )

1
1 (1.4)

j

j

n

n
mn

j

j

m
n n

j

jj

m m

E C

jm n
j





 
 
 

    
         





  

Proof.   This can be established directly by 

exploiting cancellation of the form 
[ ] !/ 1/ ( )!jm

j j j jc c c m    when ,j jc m  which 

occurs between the ingredients in Cauchy’s formula 

and the falling factorials in the moments. Write 

jm jm . Then, with the first sum indexed by 
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1( ,... ) n

nc c c    and the last sum indexed by 

1( ,..., ) n

nd d d    via the correspondence 

,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

This last sum simplifies to the indicator 

1( ),m n  corresponding to the fact that if 

0,n m   then 0jd   for ,j n m   and a 

random permutation in n mS   must have some cycle 

structure 1( ,..., )n md d  . 

The moments of 
( )n

jC   follow immediately as 

 ( ) [ ]( ) 1 (1.5)n r r

jE C j jr n    

We note for future reference that (1.4) can also be 

written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.6)j j

n n n
m mn

j j j

jj j

E C E Z jm n
 

     
      

    
 

  

Where the jZ  are independent Poisson-distribution 

random variables that satisfy ( ) 1/jE Z j   

Although (1.3) provides a formula for the joint 

distribution of the cycle counts ,n

jC  we find the 

distribution of 
n

jC  using a combinatorial approach 

combined with the inclusion-exclusion formula. 
 

Lemma  1.2.   For 1 ,j n   

[ / ]
( )

0

[ ] ( 1) (1.7)
! !

k ln j k
n l

j

l

j j
P C k

k l

 



     

Proof.     Consider the set I  of all possible cycles of 

length ,j  formed with elements chosen from 

 1,2,... ,n  so that 
[ ]/j jI n . For each ,I   

consider the ―property‖ G  of having ;  that is,  

G is the set of permutations nS   such that   

is one of the cycles of .  We then ha

( )!,G n j   since the elements of  1,2,...,n  

not in   must be permuted among themselves. 

To use the inclusion-exclusion formula we 

need to calculate the term ,rS  which is the sum of 

the probabilities of the r -fold intersection of 

properties, summing over all sets of r distinct 

properties. There are two cases to consider. If the r
properties are indexed by r cycles having no 

elements in common, then the intersection specifies 

how rj  elements are moved by the permutation, and 

there are ( )!1( )n rj rj n   permutations in the 

intersection. There are 
[ ] / ( !)rj rn j r  such 

intersections. For the other case, some two distinct 

properties name some element in common, so no 

permutation can have both these properties, and the 
r -fold intersection is empty. Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

  

  
  

Finally, the inclusion-exclusion series for 

the number of permutations having exactly k  

properties is 

,

0

( 1)l

k l

l

k l
S

l




 
  

 
   

Which simplifies to (1.7) 

 

Returning to the original hat-check 

problem, we substitute j=1 in (1.7) to obtain the 

distribution of the number of fixed points of a 

random permutation. For 0,1,..., ,k n   

( )

1

0

1 1
[ ] ( 1) , (1.8)

! !

n k
n l

l

P C k
k l





  
  

and the moments of 
( )

1

nC  follow from (1.5) with 

1.j   In particular, for  2,n   the mean and 

variance of 
( )

1

nC are both equal to 1. 

The joint distribution of 
( ) ( )

1( ,..., )n n

bC C  for any 

1 b n   has an expression similar to (1.7); this 

too can be derived by inclusion-exclusion. For any 

1( ,..., ) b

bc c c    with ,im ic   

1

( ) ( )

1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.9)

! !

i i

b

i

n n

b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l

 

 

 



     
     

     


 

  

The joint moments of the first b  counts 
( ) ( )

1 ,...,n n

bC C  can be obtained directly from (1.4) 

and (1.6) by setting 1 ... 0b nm m      
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It follows immediately from Lemma 1.2 that for 

each fixed ,j  as ,n   

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k


     

So that 
( )n

jC converges in distribution to a random 

variable jZ  having a Poisson distribution with 

mean 1/ ;j  we use the notation 

( )n

j d jC Z  where (1/ )j oZ P j   

to describe this. Infact, the limit random variables 

are independent. 

 

Theorem  1.3   The process of cycle counts 

converges in distribution to a Poisson process of   

with intensity 
1j . That is, as ,n   

( ) ( )

1 2 1 2( , ,...) ( , ,...) (1.10)n n

dC C Z Z   

Where the , 1, 2,...,jZ j   are independent 

Poisson-distributed random variables with  

1
( )jE Z

j
   

Proof.  To establish the converges in distribution 

given in Theorem 1.3, one shows that for each fixed 

1,b   as ,n   

 
( ) ( )

1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     

This can be verified from (1.9). An alternative proof 

exploits (1.6) and the method of moments.  

 

Error rates 

The proof of Theorem 1.3 says nothing about the 

rate of convergence. Elementary analysis can be 

used to estimate this rate when 1b  . Using 

properties of alternating series with decreasing 

terms, for 0,1,..., ,k n   

( )

1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

   

It follows that  
1 1

( )

1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

 




    

  


  

Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n



     
    

  

We see from (1.11) that the total variation distance 

between the distribution 
( )

1( )nL C  of 
( )

1

nC  and the 

distribution 
1( )L Z  of 

1,Z  defined by  

 

Proof of Theorem 1.4 

Establish the asymptotics of 
( )( )n

nA C     under 

conditions 0( )A  and 01( ),B  where 

 
'

( ) ( )

1 1

( ) 0 ,

i i

n n

n ij

i n r j r

A C C
    

     and 

''( / ) 1 ( )g

i i idr r O i     as ,i   for some 

' 0.g    We start with the expression 

'

'
( ) 0

0

10
1

[ ( ) ]
[ ( )] 1 (1 ) (1.1)

[ ( ) ]
i i

n m
n i

i nm i
r j r

P T Z n
P A C E

P T Z n ir



 

  

 
   

  


  

  

'

0

1 1 1 '

1,2,7
1

[ ( ) ]

exp [log(1 ) ] 1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d O n n

n


    





 
    

 


  

and 

  

'

0

1 1 1

1,2,7
1

[ ( ) ]

exp [log(1 ) ] 1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d O n n

n


    





 
    

 


 

Where 
 
'

1,2,7
( )n  refers to the quantity 

derived from 
'Z . It thus follows that 

( ) (1 )[ ( )]n d

nP A C Kn    for a constant K , 

depending on Z  and the 
'

ir  and computable 

explicitly from (1.1) – (1.3), if Conditions 0( )A  and 

01( )B  are satisfied and if 
'

( )g

i O i    from some 

' 0,g   since, under these circumstances, both 

 
1 '

1,2,7
( )n n  and  

 
1

1,2,7
( )n n  tend to zero as 

.n   In particular, for polynomials and square 

free polynomials, the relative error in this asymptotic 

approximation is of order 
1n

 if 
' 1.g    

 

Proof of Theorem 1.5 

For 0 /8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n b





 
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Where 
 7,7

( , ) ( / )n b O b n   under Conditions 

0 1( ), ( )A D  and 
11( )B   

Since, by the Conditioning Relation,  

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
 

  

It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( )

[ ( ) ]
1 (1.4)

[ ( ) ]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z

P T Z n r
r

P T Z n







  
  

 



 

  

Suppressing the argument Z  from now on, we thus 

obtain 

0

0 0

[ /2]

0
0

/2 0 0

0

0

[ /2]

0 0

/2 0

[ /2]

0

0

( ( [1, ]), ( [1, ]))

[ ]
[ ] 1

[ ]

[ ]
[ ]

[ ]

[ ]( [ ] [ ]

[ ] [ ]

[ ]

TV

bn
b

r n

n

b
b

r n r b

n

b bn bn

s

n

b b

r n r

n

b

s

d L C b L Z b

P T n r
P T r

P T n

P T r
P T r

P T n

P T s P T n s P T n r

P T r P T r

P T s

 

 

 

 



  
   

 


  



 
       
 

   

 



 



 

 

 

0

[ /2]

0 0

0 [ /2] 1

[ ] [ ]

[ ]

[ ] [ ] [ ] / [ ]

bn bn

n

n n

b bn n

s s n
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Required order under Conditions 

0 1( ), ( )A D  and 11( ),B  if ( ) .S    If not, 

   10.8
n

 can be replaced by 
   10.11

n
in the 

above, which has the required order, without the 

restriction on the ir  implied by ( )S   . 

Examining the Conditions  0 1( ), ( )A D  and 11( ),B it 

is perhaps surprising to find that 11( )B  is required 

instead of just 01( );B  that is, that we should need 

1

2
( )

a

ill
l O i 


   to hold for some 1 1a  . A 

first observation is that a similar problem arises with 

the rate of decay of 1i  as well. For this reason, 1n  

is replaced by 1n


. This makes it possible to replace 

condition 1( )A  by the weaker pair of conditions 

0( )A and 1( )D in the eventual assumptions needed 

for 
   7,7

,n b  to be of order ( / );O b n   the decay 

rate requirement of order 
1i  

 is shifted from 1i  

itself to its first difference. This is needed to obtain 

the right approximation error for the random 

mappings example. However, since all the classical 

applications make far more stringent assumptions 

about the 1, 2,i l   than are made in 11( )B . The 

critical point of the proof is seen where the initial 

estimate of the difference
( ) ( )[ ] [ 1]m m

bn bnP T s P T s    . The factor 

 10.10
( ),n  which should be small, contains a far 

tail element from 1n


 of the form 1 1( ) ( ),n u n   

which is only small if 1 1,a   being otherwise of 

order 11( )aO n  
 for any 0,   since 2 1a   is 

in any case assumed. For / 2,s n  this gives rise 

to a contribution of order  11( )aO n   
 in the 

estimate of the difference 

[ ] [ 1],bn bnP T s P T s     which, in the 

remainder of the proof, is translated into a 

contribution of order 11( )aO tn   
for differences 

of the form [ ] [ 1],bn bnP T s P T s     finally 

leading to a contribution of order 1abn  
 for any 
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0   in 
 7.7

( , ).n b  Some improvement would 

seem to be possible, defining the function g  by 

   ( ) 1 1 ,
w s w s t

g w
  

    differences that are of 

the form [ ] [ ]bn bnP T s P T s t     can be 

directly estimated, at a cost of only a single 

contribution of the form 1 1( ) ( ).n u n   Then, 

iterating the cycle, in which one estimate of a 

difference in point probabilities is improved to an 

estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a

bn bnP T s P T s t O n t n        

 for any 0   could perhaps be attained, leading to 

a final error estimate in order  11( )aO bn n    for 

any 0  , to replace 
 7.7

( , ).n b  This would be 

of the ideal order ( / )O b n for large enough ,b  but 

would still be coarser for small .b   

 

Proof of Theorem 1.6 

With b and n  as in the previous section, we wish to 

show that  
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Where 
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for any 0   under Conditions 0 1( ), ( )A D  and 

12( ),B with 12 . The proof uses sharper estimates. 

As before, we begin with the formula 
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We have  
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The approximation in (1.7) is further simplified by 

noting that  
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Combining the contributions of (1.6) –(1.9), we thus 
find that  
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The quantity 
 7.8

( , )n b is seen to be of 

the order claimed under Conditions 0 1( ), ( )A D  and 

12( )B , provided that ( ) ;S     this 

supplementary condition can be removed if 

 10.8
( )n

 is replaced by 
 10.11

( )n
   in the 

definition of 
 7.8

( , )n b , has the required order 

without the restriction on the ir  implied by 

assuming that ( ) .S    

Finally, a direct calculation now shows that 
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D. Description of the Prototype Imaging System 

The system we developed utilizes an 

oscillating plane mirror as scanning reflector. The 

radiation emitted by the target is collected by this 

mirror and focused through two offset-axis 

paraboloid (OAP) mirrors onto the MMIC/HEB 

detector. The scanning mirror is located at about 5 

cm from the target area. Fig. 8 shows the optical 

diagram for the prototype scanning system. The 
plane mirror rotates by approximately 30 at a rate of 

8 Hz, driven by a standard electromagnetic actuator. 

The actuator is in turn excited by a triangle wave. 

The receiver IF output power level is further 

increased by a broadband amplifier operating at 

room temperature. A low-pass filter (LPF) with a 

cutoff frequency of 4 GHz is placed in cascade to 

limit the bandwidth to the effective bandwidth of the 

receiver as determined. The output of the LPF is 

connected to a standard microwave detector in order 

to produce a rectified voltage. The detected signal is 
averaged and displayed on a digitizing oscilloscope. 

This technique allows us to obtain a linear image of 

one line in the target [50]. The system can in 

principle be extended to obtain two-dimensional 

imagery of an object. This can be achieved, for 

example, via controlled motion of the scan target in 

the direction perpendicular to the scanning plane. 

 

E. Results 

Using the method outlined in the previous 

section, we have recorded the image of a step from a 
room temperature load (280 K) to a liquid nitrogen 

temperature load (77 K), These measurements were 

performed at 1.6 THz using detector A (discussed in 

Section IV-B). The step was located approximately 

in the center of the scanned length. The measured 

noise temperature at the image was about 3000 K. 

The effective integration time on a pixel was 200 

ms, which was obtained based on the scan rate and 

the size of the target. The image records a peak-to-

peak level of 43 mV for a of about 200 K. From this, 

a responsivity of 0.2 mV K is inferred. Fig. 9(b) 

shows an image obtained in a similar fashion for a 
steel bar in thermal equilibrium with a THz absorber 

background. The absorber was cooled to a 

temperature (280 K)3 slightly below that of the 

surroundings. The peak-to-peak level obtained in 

this case is 3 mV, which translates to a of 

approximately 15 K. The steel bar is essentially a 

perfect reflector ( 99%) of the ambient thermal 

radiation, which was at about 295 K. The 15 K 

signal obtained from the steel bar is consistent with 

these facts. The noise in this image is less than 0.3 

mV rms. Hence, the fluctuation level at the system 
input is equivalent to a thermal signal of less than 

1.5 K rms. This value is far greater than what would 

be expected from the radiometry formula, ignoring 

the contribution of gain fluctuations (0.1 K). Theory 

predicts that for white noise, the Allan time varies 

inversely proportional to the bandwidth, which could 

explain why is larger than the first term in (1).4 No 

measurements have been published that support this 

prediction for HEB receivers, however. Our own 

recent measurements actually show about the same 

Allan time for MHz, 3 GHz, and 4 GHz. Moreover, 

for terrestrial terahertz imaging systems, a typical 
integration time per pixel may be about 10 ms, so 

the most important range in the Allan variance 

diagram is for such short times, well below the 

typical value for in HEBs. We are presently 

performing  additional Allan time measurements for 

different bandwidths and the results will be 

published in a future paper. Our results also show 

some effects due to 60 Hz, but these are traceable to 

the bias power supplies. 
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